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Abstract. We study a single self avoiding hydrophilic hydrophobic polymer chain, through Monte-Carlo
lattice simulations. The affinity of monomer i for water is characterized by a (scalar) charge λi, and the
monomer-water interaction is short-ranged. Assuming incompressibility yields an effective short ranged
interaction between monomer pairs (i, j), proportional to (λi + λj). In this article, we take λi = +1 (resp.
(λi = −1)) for hydrophilic (resp. hydrophobic) monomers and consider a chain with (i) an equal number of
hydro-philic and -phobic monomers (ii) a periodic distribution of the λi along the chain, with periodicity
2p. The simulations are done for various chain lengths N , in d = 2 (square lattice) and d = 3 (cubic lattice).
There is a critical value pc(d,N) of the periodicity, which distinguishes between different low temperature
structures. For p > pc, the ground state corresponds to a macroscopic phase separation between a dense
hydrophobic core and hydrophilic loops. For p < pc (but not too small), one gets a microscopic (finite
scale) phase separation, and the ground state corresponds to a chain or network of hydrophobic droplets,
coated by hydrophilic monomers. We restrict our study to two extreme cases, p ∼ O(N) and p ∼ O(1) to
illustrate the physics of the various phase transitions. A tentative variational approach is also presented.

PACS. 61.41.+e Polymers, elastomers, and plastics – 87.15.-v Molecular biophysics – 64.70.-p Specific
phase transitions

1 Introduction

A very popular approach to the protein folding problem,
is to emphasize the heterogeneity of a protein due to the
different side chains [1]. Of special importance in this con-
text is the model of a (quenched) random hydrophilic hy-
drophobic chain, since (i) proteins are usually designed to
work in water (ii) the first step of the folding transition
may correspond to the formation of a hydrophobic core
[2]. In this model, each monomer is described by a sin-
gle “charge” λi, and the polymer-water interactions are
modelled through the Hamiltonian:

Hpw = −
N∑
i=1

N∑
α=1

λi a(ri −Rα) (1)

where a(r) denotes a short-ranged (Van der Waals-like)
monomer-water molecule interaction, N and N denote
respectively the number of monomers and of water
molecules, and ri and Rα, their respective positions. As-
suming that the system is incompressible, one gets [1,3]

Hpw = +
1

2

N∑
i=1

N∑
j=1

(λi + λj) a(ri − rj)−A
N∑
i=1

λi (2)

a e-mail: enzo@spht.saclay.cea.fr

where A =
∑

r a(r). The second term in (2) is a con-
stant for the quenched disordered chain (as well as for
the periodic chain studied in this article). It will therefore
be omitted henceforth. The phase diagram of this ran-
dom hydrophilic hydrophobic polymer has been studied
by various methods (mean-field, dynamics, replica varia-
tional calculations, ...) for simple disorder distributions of
the λi ’s [4–7]. The results can be roughly summarized as
follows

(i) for strongly (on average) hydrophobic chains, one ex-
pects a θ collapse transition to occur first, followed
at lower temperatures, by a scale dependent freezing
transition;

(ii) for chains that are (on average), either weakly hydro-
phobic or hydrophilic, one expects a freezing transi-
tion that is perhaps characterized by a “random first
order”transition [8].

An interesting application of this model to proteins has
recently been published [9], even though their hydrophobic
content appears not to be random [10].

As a first step towards the protein folding problem, we
will study numerically a single self avoiding chain, where
the distribution of the λi ’s is periodic along the chain. To
be more specific, the chain of N monomers is made out of
periodically alternating blocks of p hydrophilic monomers
(λi = +1) and p hydrophobic monomers (λi = −1).
Following equation (2), the Hamiltonian of the chain
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is defined as

H = +
1

2

N∑
i=1

N∑
j=1

(λi + λj) ∆(ri − rj) (3)

where ∆(ri − rj) denotes a lattice ∆ function: ∆(r) = 1,
if r connects nearest neighbours, and 0 otherwise. In this
paper, we will consider square (d = 2) and cubic (d = 3)
lattices.

The parameter p is an important ingredient of the
problem since there is a critical value of p, that we note
pc(d,N), above which the equilibrium ground state con-
sists of a single hydrophobic core. The argument is as fol-
lows; for a spherical core (d = 3), the number of points

on the surface is of order N
2
3 , whereas the surrounding

hydrophilic loops occupy a number of surface points of
order N/p. Therefore, one expects a single macroscopic

hydrophobic core for p > O(N
1
3 ), and many microscopic

hydrophobic droplets for p < O(N
1
3 ). We therefore get

pc(3, N) ∼ O(N
1
3 ). For d = 2, the steric constraints are

much stronger, and one hydrophilic loop anchored on the
hydrophobic core screens part of its “surface”. Since the
distance between the two ends of the hydrophilic loop typ-
ically scales with the radius of gyration of the core, that is
also with its “surface”, this screening effect is very strong.
It implies that pc(2, N) ∼ O(N). In the case p < pc(d,N),
corresponding to many hydrophobic droplets, one should
further distinguish between a linear or branched topology
of the hydrophobic droplets. For very small p, the very
formation of these droplets is impeded by the hydrophilic
parts of the chain (see below)

The numerical simulations for the periodic chain of
equation (3) are done on the square or cubic lattice, us-
ing the multiple Markov chain method [11]. The plan of
the paper is the following. We first recall, in section 2 the
principles of the multiple Markov chain method in Monte-
Carlo simulations of polymer chains. As a preliminary test,
we apply this method to the two dimensional θ collapse of
a purely hydrophobic chain. We then consider the perio-
dic hydrophilic hydrophobic chain in two extreme cases,
namely p ∼ O(N) and p ∼ O(1), to capture the physics
of the various phase transitions. Putting numbers on the
above estimates of pc shows that it will be numerically
convenient to study the single core phase in d = 3 and
the multiple cores’ phase in d = 2. In Section 3, the case
p ∼ O(N) is studied in detail for d = 3; we also briefly con-
sider the corresponding transition in d = 2. In Section 4,
we study the case p ∼ O(1) which, as stated above, has
a multiple droplet low temperature structure: for d = 2,
we present evidence for the existence of an intermediate
branched phase, if p is not too small. The d = 3 case
requires very long chains and is only briefly considered.
Finally, we also present a tentative variational method for
this case.

2 The multiple Markov chain method

2.1 Summary of the method

In this section we give a rapid description of the numeri-
cal techniques which we use to calculate thermodynamic
(and/or geometric) properties of the chains as a function
of the temperature. These techniques have been discussed
in detail in reference [12], and can be summarized as fol-
lows.

The implementation of the Metropolis Monte-Carlo
method relies on the multiple Markov chain sampling.
First, one generates with the simple Metropolis heat bath,
a Markov chain at temperature T : this procedure makes
use of an hybrid algorithm, which has pivot [13] as well as
crankshaft moves [14]. Pivot moves are of a global type,
and operate well in the swollen phase; crankshaft moves,
which are of a local type, are essential in speeding up con-
vergence close to the collapse phase transitions [12]. In
these calculations, each Monte-Carlo step consists ofO(1)
pivot move and O(N) crankshaft moves.

One may then run in parallel a number m (typically
15− 20) of these Markov chains at different temperatures
T1 > T2 > . . . > Tm. We allow the chains to interact (by
possibly swapping conformations) as follows. Among the
m chains, we select, with uniform probability, two chains
(α, β) at respective temperature Tα and Tβ . A trial move
is an attempt to swap the two current conformations of
these chains. If πK(T ) is the probability of getting state

K at temperature T (that is πK(T ) ∼ e−
H(K)
T , in obvious

notations), and Sα and Sβ are the current states in the
αth and βth chain, then we accept the trial move (i.e. we
swap Sα and Sβ) with probability

r(Sα, Sβ) = min

(
1,
πSβ (Tα)πSα(Tβ)

πSα(Tα)πSβ (Tβ)

)
. (4)

Note that the whole process is itself a (composite) Markov
chain. Since the underlying Markov chains are ergodic, so
is the composite Markov chain. Furthermore, the compos-
ite chain obeys detailed balance, since the swap moves
as well as the moves in the underlying chains obey de-
tailed balance [12]. The swapping procedure dramatically
decreases the correlations within each Markov chain, and
produces little CPU waste since, in any case, one is inter-
ested in obtaining data at many temperatures [11].

2.2 The two dimensional θ transition

We first consider the application of the multiple Markov
chain method to the two dimensional θ collapse transi-
tion of a purely hydrophobic chain (see Ref. [12] for the
case d = 3). We are mostly interested here in locating the
thermodynamic θ transition.

We show in Figure 1 the plot of the average scaled ra-

dius of gyration

(
〈R2〉

N2νθ

)
versus temperature, for different
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Fig. 1. Scaled radius of gyration
(
〈R2〉

N2νθ

)
vs. temperature

for the purely hydrophobic chain in d = 2, for N =
80 (4), 160 (�),240 (�), 480 (×), 640 (+). A crossing occurs
for Tθ ' 1.5.

values of N . Finite size scaling theory [15–20] predicts that

〈R2〉

N2νθ
= f(tNΦ) (5)

where t = |
T − Tθ
Tθ

| is the reduced temperature for N

large (Tθ = Tθ(N = ∞)), Φ a crossover exponent, and
f(x) a scaling function with a finite value for x → 0.

Using the exact result 2νθ =
8

7
[21] yields an estimate

of the θ temperature: Tθ ' 1.5, in agreement with re-
cent estimates [19]. To study the critical behaviour of the
specific heat close to the θ point is a notoriously difficult
problem in d = 2. We have also verified this point, and we
have only extracted from the N dependence of the peak
of the specific heat (Fig. 2) a large N critical temperature
T ′θ ∼ 1.5 in broad agreement with the value obtained from
the behaviour of the radius of gyration.

3 The case p = O(N)

3.1 Numerical simulations for d = 3

This case corresponds to a single hydrophobic core ground
state since pc(3, N) ∼ O(N

1
3 ). In the case of the θ collapse

transition, the N monomers of the chain play an equiva-
lent role (neglecting end effects for a long enough chain).
In the present problem, the repulsive interaction between
hydrophilic monomers leads us to consider two possibili-
ties (i) the collapse transition first occurs in a single hy-
drophobic block of length p (ii) the collapse is due to a

cooperative effect of the
N

2p
hydrophobic blocks, in a way

similar to the θ transition. Scenario (ii) is consistent with
a unique phase transition of a discontinuous character oc-

curring at temperature Tθ

(
N

2

)
. Scenario (i) is a priori
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Fig. 2. Specific heat vs. temperature, for the purely hydropho-
bic chain in d = 2, for the same values of N . The extrapolated
critical temperature is T ′θ ' 1.5.

Fig. 3. Typical phase separated configuration (d = 3, p = N
8

,
N = 640). Circles denote hydrophobic monomers.

consistent with a collapse transition at Tθ(p), and raises
the question of a (surface induced) sticking transition of
the individual hydrophobic blocks.

In either case, the collapse transition is expected to
be discontinuous, with a jump of the radius of gyration.

We have fixed p =
N

8
in the simulations, and let N vary

from 80 to 640. A typical low temperature configuration
for N = 640 is shown in Figure 3: as expected, it displays
a macroscopic phase separation between the hydrophobic
and hydrophilic parts of the chain. To get an estimate
of the critical temperature, we have first considered the
radius of gyration 〈R2〉 of the complete chain. As shown
in Figure 4, the exponent of 〈R2〉 is, at all temperatures,
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Fig. 4. Log-log plot of 〈R2〉 vs. N at various temperatures for
(d = 3, p = N

8 ), and N = 80, 160, 240, 360, 480, 640, 800. The
temperature is T = ∞ (�), 3.33 (4), 2.0 (∗), 1.0 (�), 0.5 (+).
The upper and lower straight lines have slopes compatible with
self avoiding behaviour 2νSAW ' 1.176.

Table 1. Comparison between the critical temperature of the
hydrophilic hydrophobic chain Tc = Tc(p,N), and the θ tran-
sition temperatures [12] of a fully hydrophobic chain of (i) p
monomers (ii) N

2 monomers. The first three lines correspond to

p = N
8

(N = 80, 640, 800). The last line corresponds to p = N
4

(N = 800). The value Tθ(p = 10) has been obtained using
exact enumeration techniques.

Tc Tθ(p) Tθ(N/2)
0.98± 0.07 1.087(exact enum.) 1.78± 0.03
1.92± 0.11 2.08± 0.08 2.51± 0.12
2.08± 0.15 2.13± 0.14 2.61± 0.14
2.27± 0.16 2.38± 0.14 2.61± 0.14

given by the self avoiding walk (SAW) value (νSAW '
0.588 [22,23]).

Our data for the large values of N are in agree-
ment with scenario (i), that is a single hydrophobic block
collapse, since the critical temperature Tc is very close
to Tθ(p) (see Tab. 1). A better estimate of Tc comes from
specific heat measurements, since the specific heat has a
quite spiky character (Fig. 5), unlike its θ point equiva-
lent [12]. We again get an estimate very close to Tθ(p). We
have also tried a finite size scaling analysis to find Tc, for
large N (and therefore large p). Following a well estab-
lished path (see e.g. [24] and references therein), we have
considered the N dependence of the height and position
of the peak in the specific heat. At the transition, and in
the scaling limit, one expects the height peak C∗ to scale
like

C∗ ∼ N2Φ−1 (6)

where the crossover exponent Φ and the specific heat expo-
nent α are related [25] through the relation Φ(2−α) = 1.
At the three dimensional θ transition, one has Φ = 0.5
and α = 0. At a (thermal) first order transition, one has
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Fig. 5. Specific heat vs. temperature for (d = 3, p = N
8

), and
N = 80 (O), 160 (�), 240 (�), 360 (×), 480 (+), 640 (4). Note
the increase of the peak as well as its shape, when N increases.

α = 1, yielding C∗ ∼ N . Finite size scaling also implies a

critical temperature shift ∆Tc = Tc(∞) − Tc(N) ∼
1

NΦ
,

yielding ∆Tc ∼
1

N
for a first order transition. Figures 6a

and 6b show our results, and confirm that our simulations
are not done in the scaling regime. It is well known indeed
that, in order to get a precise estimate of the thermody-
namic θ temperature, one has to study very long chains

(typically N > 1500). For our problem, since p =
N

8
, we

should study the case N = 12 000, which is presently out
of reach. We have done an independent simulation with

N = 800, and p =
N

4
= 200. The peak in the specific

heat occurs for Tc ' 2.5, very close with Tθ(p = 200) (see
Tab. 1).

We therefore believe that, in the thermodynamic limit
(N, p→∞), one has a discontinuous single block collapse
transition; the critical temperature Tc(∞) is the same as
the collapse temperature of the fully hydrophobic chain
(Tθ = Tθ(∞) ' 3.7 [20]). The transition is well characte-
rized by the phase separation order parameter [6,7]:

〈δR2〉 = 〈R2
phil〉 − 〈R

2
phob〉 (7)

where 〈R2
phil〉 (resp. 〈R2

phob〉) is the squared radius of gyra-

tion of the hydrophilic (resp. hydrophobic) monomers. In

Figure 7, we have plotted the order parameter

(
〈δR2〉

N2νSAW

)
as a function of temperature, for various values of N . Its
behaviour is consistent with the previous results.

An intriguing feature of the single block collapse mech-
anism is that it seems to imply the existence of an in-
termediate phase, between the low temperature phase
depicted in Figure 3, and the swollen coil phase. This
intermediate phase is a necklace (or network) of single
hydrophobic blocks, and its free energy differs from the
low temperature free energy by a surface free energy. We
have not found this intermediate phase in our multiple
chain Monte-Carlo Method, and this may have several
causes. It is for instance possible that the temperatures
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Fig. 8. Low temperature phase separated configuration (d =
2, p = N

8 , N = 240). Black triangles denote hydrophilic
monomers. Note the isotropic shape of the hydrophobic core
(p� pc).
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Fig. 9. Log-log plot of 〈R2〉 vs. N at various temperatures
for (d = 2, p = N

8
), and N = 80, 160, 240, 360, 480, 640, 800.

The temperature is T = ∞ (�), 1.4 (4), 1.0 (∗), 0.5 (�). The
upper and lower straight lines have slopes compatible with self
avoiding behaviour 2νSAW = 1.5.

of the various chains T1 > T2 > . . . > Tm of our sim-
ulations had too large a spacing to find this phase. Fur-
ther work, in particular a precise determination of surface
properties, is needed on this point.

3.2 Numerical simulations for d = 2

In this case, one expects pc(2, N) ∼ O(N), yielding two
different situations. If p > pc, one will get a single hy-
drophobic core below the collapse transition (Fig. 8). One
may then study the (full) radius of gyration at high and
low temperatures (Fig. 9), obtaining in both cases self
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Fig. 10. Low temperature multiple cores’ configuration dis-
playing the screening effect of the hydrophilic loops (d = 2,
p = N

24
, N = 240).

Fig. 11. Low temperature phase separated configuration
(d = 2, p = N

12 ' pc+, N = 240). Note the elongated shape
of the hydrophobic core.

avoiding behaviour (i.e. ν =
3

4
[26]). If p < pc, several hy-

drophobic cores appear (Fig. 10). On the square lattice, we
have found numerically that 0.06 < pc(2, N)/N < 0.08.
One may get a feeling for this result by considering a
square shaped hydrophobic single core that is fully sur-
rounded by hydrophilic loops: the above estimates cor-
responds to a total number of hydrophilic loops approx-
imately equal to 6−8. This argument is only suggestive
since the single core becomes elongated as p → p+

c . This
is clearly due to the screening effect of the hydrophilic
loops: the hydrophobic core tries to maximize its perime-
ter at fixed surface (Fig. 11). As for the phase transition
for p > pc, one may say that specific heat data display a
rather smooth behaviour; the transition is not markedly

Fig. 12. Typical multiple cores’ configuration (d = 2, p = 8,
N = 1200). Black triangles denote hydrophilic monomers.

discontinuous. As already mentionned, extracting a more
detailed information from these data is rather tricky in
two dimensions.

4 The many hydrophobic droplet chain
p = O(1)

4.1 Numerical simulations for d = 2

The large value of pc(2, N) shows that the multiple
droplets’ phase should be a priori easier to study in two
dimensions. We show in Figure 12 a typical low tem-
perature configuration, which displays branched polymer
features [27]. From Section 3.2, we know that the max-
imum number of hydrophobic monomers in a droplet is
nMAX ∼ 12 − 16 p. To further investigate the branched
character of the phase, we have studied the case p = 8,
with N ranging from 80 to 1200 (other values of p are
briefly considered below). For p = 8, the high and low
temperature exponents ν of the radius of gyration are
shown in Figure 13. Above the transition, we get SAW
behaviour; below the transition, we get ν ' 0.64, which is
indeed close to the branched polymer (BP) value [28].

It turns out that low temperatures are difficult to
study because of non-equilibrium effects, so that we are
not able to follow in detail the thermal evolution of the
branched phase. This is partially due to the fact that the
Monte-Carlo method of Section 2 has not been optimized
to deal with branched phases. Another reason may be
the possible existence of a dynamical phase transition to-
wards some kind of glassy branched state (see Sect. 4.3).
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We have therefore restricted our study to the phase tran-
sition between the high temperature (SAW) and low tem-
perature (BP) phases. Using the same finite size argument
as in section 2.2, we plot in Figure 14 the scaled radius

of gyration

(
〈R2〉

N2ν∗

)
vs. temperature. Various values of

the unknown exponent ν∗ have been considered (Fig. 15).
Our results show the existence of a phase transition at
Tc ' 0.8± 0.1, and evidence for a new critical behaviour
(ν∗ ' 0.70± 0.03) at Tc. The phase transition seems also
to be quite smooth, if one considers specific heat data. An-
other “experimental” observation concerns the size distri-
bution of the hydrophobic droplets: below the transition,
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7 (c) ν∗ = νBP ' 0.64.

we find that most of the droplets do not reach the max-
imum size allowed nMAX . This can be interpreted as an
entropic effect, very much along the lines of reference [8].

We conclude this section by a few remarks on the
role of p. We have also considered the case p = 4, and
p = 10, 12, with the same range of values of N . We do
not find a clear evidence for a phase transition for p = 4,
whereas we find evidence for two transitions for p = 10, 12.
In the latter case, the branched phase gives way at low
temperature to a reentrant self avoiding chain of finite hy-
drophobic droplets. This shows that the balance between
linear and branched topologies is very dependent on the
value of p. If p is too small, the formation of the droplets is
impeded by the repulsive hydrophilic monomers. For large
p, a local collapse is possible, favoring the linear topology
at low temperature. For intermediate values of p, a non
local hydrophobic collapse is apparently favored, yielding
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Fig. 16. Typical multiple cores’ configuration (d = 3, p = 4,
N = 720). Circles denote hydrophobic monomers.

a branched topology. These issues will be further tackled
in Section 4.3.

4.2 Numerical simulations for d = 3

A typical low temperature configuration is shown in
Figure 16, for p = 4, N = 720. The properties of the
multiple hydrophobic cores phase are difficult to study,
since one needs very large values of N . Furthermore, for
d = 3, a SAW at the θ point and a branched polymer
(BP) have the same exponent νθ = νBP = 0.5 [29], which
makes a detailed scaling analysis difficult.

4.3 Variational method for the many droplet phase

Following traditional polymer physics methods [1], we will
study the low temperature branched phase in a variational
way. The basic steps can be summarized as follows:

(i) One derives an effective quantum Hamiltonian.
(ii) Ones uses a ground state approximation, together with

a saddle point approximation.
(iii) Finally, one performs a variational calculation, and

minimizes the free energy with respect to the relevant
parameters.

Steps (i) and (ii) are familiar in the context of the
usual θ collapse transition. Since one is then interested
in a macroscopic collapse, a continuous description of the
chain is valid; furthermore, the ground state approxima-
tion holds for long enough chains, since there is a bound
state representative of the collapsed globule. Finally, step
(iii) is usually implemented with a constant or Gaussian
density around the center of mass of the collapsed globule,
which can be taken as fixed in all calculations.

On the contrary, what we have in the low temperature
branched phase is a inhomogeneous liquid of microscopic
hydrophobic droplets. If one follows the above procedure,
one must take the extensive entropy of these droplets (i.e.
the degeneracy of the saddle point) into account. Since
we believe that our approach may be of interest in other
contexts [8], we will assume that a continuum description
of the chain is valid, and derive the simplest form of the
associated Hamiltonian. We will also assume that ground
state dominance holds.

The partition function of the hydrophilic hydrophobic
chain reads

Z =

∫ ∏
i

dri e
− d

2a2

∑
i(ri+1−ri)

2−βH (8)

where a is a typical monomer length and i = 1, 2, ... N .
The lattice Hamiltonian (H) has been derived in equation
(3), and its off-lattice version reads

βH =
1

2

∑
i6=j

[v0 + β(λi + λj)] δ(ri − rj)

+
1

6

∑
i6=j 6=k

w0 δ(ri − rj) δ(rj − rk)

+
1

24

∑
i6=j 6=k 6=l

y0 δ(ri − rj) δ(rj − rk) δ(rk − rl).

(9)

Note that we have also included three (w0) and four (y0)
body terms for reasons that will soon become clear. We
also assume (r1 = rN = 0).

Defining the local density ρ(r) as

ρ(r) =
∑
i

δ(r− ri) (10)

we have

Z =

∫
Dφ(r)Dρ(r)ζ(ρ, φ) exp

(
i

∫
ddrφ(r)ρ(r)

−

∫
ddr
[v0

2
ρ2(r)+

w0

6
ρ3(r)+

y0

24
ρ4(r)

])
(11)

with

ζ(ρ, φ)=

∫ ∏
i

dri e
− d

2a2

∑
i(ri+1−ri)

2−i
∑
i φ(ri)−β

∑
i λiρ(ri).

(12)

For the periodic hydrophilic hydrophobic chain, we intro-
duce transfer matrices T± for λi = ±1 and get

ζ(ρ, φ) = 〈0|
[
T p+T

p
−

] N
2p |0〉 (13)

with

〈r|T+|r
′〉 = e−

d

2a2 (r−r′)2−iφ(r)−βρ(r) (14)
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and

〈r|T−|r
′〉 = e−

d

2a2 (r−r′)2−iφ(r)+βρ(r). (15)

In equation (13), the differences between p ∼ O(N) and
p ∼ O(1) are clearly displayed. From now on, we will set
p = 1, without questioning any further the existence of
the continuum limit in this case. Using the identity

〈r|T+T−|r
′〉 =

∫
ddr0〈r|T+|r0〉〈r0|T+|r

′〉 (16)

together with equations (14, 15) leads, to lowest non trivial
order in φ(r) and ρ(r), to

〈r|T+T−|r
′〉 = e−

d

4a2 (r−r′)2−2iφ(r)+ a2

4d β
2(rρ)2(r) (17)

which implies

ζ(ρ, φ) = Tr exp−

(
N

2
H0

)
(18)

with

H0 = −
a2

4d
∇2 + 2iφ(r)−

a2

4d
β2(∇ρ)2(r). (19)

It is quite clear that our derivation is not rigorous. We nev-
ertheless feel that the ρ(r) dependent term of the Hamilto-
nian H0 is physically sound since it favors inhomogeneous
high density regions (droplets). A better approximation
would presumably involve higher derivatives of ρ(r), which
clearly define typical droplet sizes. Assuming ground state
dominance in (19), and performing a saddle point approx-
imation on φ(r) in (11) yields

ρ(r) = NΨ2(r) (20)

where Ψ(r) is a normalized wave function. We then obtain
the “free energy”per monomer as

β
F

N
= min{Ψ(r)}

∫
ddr G(Ψ(r)) (21)

where

G(Ψ(r)) =

∫
ddr

(
v0N

2
Ψ4 +

w0N
2

6
Ψ6 +

y0N
3

24
Ψ8

)
+

1

2

∫
ddrΨ(r)

(
−
a2

4d
∇2−

a2

4d
β2(∇(NΨ2))2(r)

)
Ψ(r).

(22)

At this point, it is useful to remark that one needs in this
approximation to introduce four body interactions, as in
the disordered case, and for the same reasons [4]. The fact
that attractive multi-body interactions in homopolymers
may induce a SAW-BP phase transition has been previ-
ously noted for a specific model in reference [30].

At low temperature, the last term of equation (22)
plays a dominant role. This term, as mentionned above,

tends to create an interface between hydrophilic and hy-
drophobic regions. If one uses a variational wave function
Ψ0(r) given (for d = 2) by

Ψ0(r) = a0 cos

(
2πx

l

)
cos

(
2πy

l

)
(23)

the normalization condition implies

a2
0R

2 ∼ O(1) (24)

where R is the linear dimension of the system. Plugging
this estimate in equation (22) shows that a low free en-
ergy is obtained for l ∼ a and a finite average density

ρav =
N

R2
∼ O(1). In other words, the low temperature

phase obtained from our variational approach is a dense

phase (since ν =
1

d
, with d = 2), made of microscop-

ically phase separated regions. In section (4.1), we ob-
tained from our simulations the value ν ' 0.64 below the
the (SAW)-(BP) phase transition. This result is not com-
patible with the value ν = 0.5 that we get through the
variational method. Some possible explanations for this
“discrepancy” are as follows

(i) The simulations were done for p = 8 on a lattice, and
the variational method was applied to the case p = 1,
within a continuum limit approach.

(ii) A major difference between the present multi
droplet collapse and the θ single core collapse is that
one has to take into account the degeneracy of the
saddle point equation for φ(r) in evaluating the “true”
free energy. In other words, there is a droplet entropy
that must be considered. Sticking with the variational
function of equation (23), it is easily seen that this en-
tropy favors large values of l/a. A precise calculation
is difficult, and we will not comment upon this point
anymore.

(iii) We believe however that the main reason for the dif-
ference between the exponents ν stems from the use of
a ground state approximation in estimating the right
handside of equation (18). As far as we know, this ap-
proximation, which relies on the existence of a bound
state in the Hamiltonian H0, works well for dense
(finite density) phases. It does not a priori describe
a branched polymer, which has a vanishing density.
Physically, a dense phase is not favorable because of
the repulsion between the hydrophilic monomers.

Altogether, our results seems to indicate that the fi-
nite p chain may undergo zero (p = 4), one (p = 8) or
two (p = 10, 12) phase transitions. Ground state domi-
nance is never a valid approximation, since one deals with
either linear (ν = 0.75) or branched (ν ' 0.64) struc-
tures. Reentrant behaviour, similar to the one described
for p = 10, 12, has been found recently in related models
[31,32]. Another issue of interest concerns a possible low
temperature dynamical (glass) transition, similar to the
one described in reference [8].
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5 Conclusion

We have studied a periodic hydrophilic hydrophobic chain.
An important ingredient of the physics of this problem is
the value of the period 2p. The low temperature phase con-
sists of a single (p > pc(d,N)) or multiple (p < pc(d,N))

hydrophobic core(s), where pc(3, N) ∼ O(N
1
3 ) and

pc(2, N) ∼ O(N). Using Monte-Carlo calculations, we
have studied the case p ∼ O(N) and indeed found a
macroscopic phase separation between the two types of
monomers in d = 3, and two possible regimes in d = 2.
The second case, (p ∼ O(1)) yields for both dimensions
a low temperature phase, consisting of a chain or net-
work of microscopic hydrophobic droplets linked by hy-
drophilic filaments. We have studied this phase numer-
ically in d = 2. A connection with both the branched
polymer chain [27] and the random hydrophilic hydro-
phobic chain [4–7,31] is physically appealing and shows
up in the tentative variational treatment of this phase,
as given in Section 4.3. As for proteins, the existence of
periodic hydrophobicity patterns in secondary structures
[10] suggests that our model may have some relevance
in explaining the typical size of single domain proteins
(N ∼ 120−150 residues). Further work in these directions
is in progress.

It is a pleasure to thank Henri Orland for fruitful discussions
and suggestions, and Bernard Derrida for interesting com-
ments.
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